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Abstract

Frequency dependence of seismic velocity and attenuation resulting from viscoelastic relaxation
of partially molten mantle is estimated. We consider the contribution of the melt squirt
mechanism, through which pressure differences between disk-shaped inclusions are equalized by
melt passing through connecting tubes. The pressure differences arise as a result of shear strain
compressing disk-shaped pores differently on the basis of disk orientation with respect to the
applied shear. The frequencies over which the transition from the unrelaxed to the relaxed states
occurs are determined by representing the melt as a network of tubes connecting oblate
ellipsoidal pores. The pressure equalization process is modeled by a system of first-order linear
differential equations, whose eigenvalues are the characteristic frequencies for melt squirt
relaxation. It is shown that in this framework the set of frequencies is invariant to the absolute
scale of the system but is sensitive to melt bulk modulus and viscosity, as well as distribution of
melt inside pores and conduits. Use of realistic solid and melt physical properties and pore and
conduit geometries demonstrates that it is the relaxed modulus that is most likely excited in the
seismic band and that melt mobility has little effect on seismic attenuation. Some conceivable
melt distributions, however, would result in detectable attenuation in the seismic band. In all
cases investigated, attenuation increases with frequency, indicating that melt squirt is not
responsible for global upper mantle () observations.



1. Introduction

Measurements of body waves, surface waves, nor-
mal modes, and the behavior of laboratory samples
have provided constraints on the magnitude, distri-
bution and frequency dependence of attenuation in
the Earth. Studies of anelasticity in the mantle have
shown a roughly constant ) or weak dependence
of @ on frequency [Jackson and Anderson, 1970;
Kanamori and Anderson, 1977; Karato and Spetzler,
1990]:

Q ~w?, (1)

where a ~ 0.1 to 0.3 for frequencies from 1072 to 1
Hz. Above 1 Hz, there is some evidence that () has
an approximately linear dependence on w [Solomon
and Toksoz, 1970; Kanamori and Anderson, 1977;
Anderson and Given, 1982]. Low values for Q) [Ander-
son and Hart, 1978] and low velocities at depths be-
tween 25 and 200 km in the ocean basins [Cara, 1979;
Nishimura and Forsyth, 1989; Webb and Forsyth,
1998] have been seen as evidence that melt may be
present at these depths. Positive identification of
melt has proven elusive, however, owing to difficul-
ties in separating anharmonic (frequency independent
and nonattenuating) and anelastic (attenuating and
frequency-dependent) components of velocity reduc-
tion, and in separating the effects of solid-state atten-
uation from those of partial melt [e.g., Sobolev et al.,
1996].

Stress relaxation of mantle rock with a small per-
centage of partial melt is characterized by the pres-
ence of numerous sets of potential solid-state and lig-
uid mechanisms, each with its own range of relaxation
times. Above the solidus temperature, possible con-
tributions to attenuation arise from viscous shear re-
laxation of the melt, melt squirt, melt-enhanced grain
boundary sliding, and solid-state dislocation and dif-
fusion within crystals. In this paper we do not con-
sider the effects of solid-state creep in the seismic
frequency band as this has been discussed elsewhere
[e.g., Karato and Spetzler, 1990]. We presume that
under realistic conditions (i.e., low attenuation) the
solid-state and the melt-related contributions to at-
tenuation are approximately additive. Given realis-
tic melt viscosity and inclusion aspect ratios, viscous
shear relaxation of the fluid occurs far too quickly
to provide attenuation in the seismic frequency band
[O’Connell and Budianski, 1977; Schmeling, 1985].

Although it has been found that grain bound-
ary deformation processes are important at tectonic
strain rates [Hirth and Kohlstedt, 1995a, b], no data
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relevant to seismic frequencies exist on the influence
of melt-enhanced grain boundary sliding accommo-
dated by dislocation and diffusion creep. Thus, here
we focus on the effect of the melt squirt mechanism
to reduction of the shear modulus and absorption of
energy.

Past efforts to describe the effect of melt on the
frequency dependence of attenuation have included
those of O’Connell and Budianski [1977], Mavko [1980],
and Schmeling [1985]. These studies have relied on
models that identify relaxation times on the basis of
simple models for the connectivity of the melt. Con-
nectivity of melt inclusions has been approximated
as (1) intersecting cracks, (2) fluid inclusions con-
nected by simply shaped conduits, or (3) fluid inclu-
sions communicating through a permeable medium.
One feature shared by these studies is that relaxation
times were found to be too short (107% to 102 s)
to provide attenuation in the seismic frequency band
(1072 to 10! Hz). One exception to this is the result
of Mavko [1980] that given melt partitioned into 10%
cuspate, triple junction-like tubes, and 90% in the
connected pores, the characteristic frequencies begin
to enter the high-frequency end of the seismic band.
Here we adopt a similar model in that volumetrically,
the melt is contained mostly in low aspect ratio disc-
like pores, connected by a smaller percentage of melt
in the form of narrow cuspate tubes. This view of
the melt phase is motivated by experimental results
where partial melt textures have been analyzed in
detail [Waff and Bulau, 1979; Kohlstedt, 1992; Faul
et al., 1994]. An important effect of the melt phase
being partitioned in this manner is that when shear
stresses are applied externally, large amounts of melt
are forced through relatively long narrow conduits,
thereby increasing the importance of longer relaxation
time constants in the system.

“Melt squirt,” a term coined by Mavko and Nur
[1975], refers to relaxation occurring when pressure
differences between neighboring inclusions drive fluid
flow. The pressure gradients are induced when exter-
nal shear is imposed, variably pressurizing inclusions
of different orientations. As discussed below, hydro-
static compression is not likely to create measurable
attenuation in the seismic band, so bulk effects are not
considered here in detail. The timescale of fluid pres-
sure equalization controls the frequencies over which
melt squirt is important. This equalization time is de-
pendent on the geometry of inclusions and connecting
conduits, viscosity of the melt, and compressibility of
the melt and surrounding rock.



In the following, we model the frequency depen-
dence of seismic velocity and attenuation by calculat-
ing the spectrum of characteristic relaxation frequen-
cies resulting from melt squirt. A representation of
the melt as a network of realistically shaped conduits
joining ellipsoidal pores is used. With this type of rep-
resentation it is possible to evaluate the effect of any
discrete form of melt connectivity, or set of physical
parameters. We select three end-member possibilities
for melt distribution and determine their relaxation
spectra and their effect on seismic velocity and at-
tenuation. Each case is evaluated for its potential to
produce significant attenuation in the seismic band.

2. Modeling Material Properties:
Basic Relations

In response to a step function in applied shear
strain a sequence of stress states in the partially
molten rock can be recognized. These discrete stages
of melt relaxation are illustrated in Figure 1. Initially,
when external shear is applied, the instantaneous re-
sponse, i.e., the “glued” case [O’Connell and Budi-
anski, 1977] is the elastic state occurring before any
shear stresses inside the melt have dissipated (Fig-
ure 1d). Viscous relaxation inside melt inclusions is
the transition from the glued state to the “unrelaxed”
state (Figure le). Since the viscosity of melt is near
100 Pa s, and the shear modulus is of the order of giga-
pascals, the times associated with relaxation of shear
stresses inside melt pockets are very short, and the
associated frequencies lie far above the seismic band.
Thus we do not consider this mechanism here. As the
melt shear stresses relax, differences in pore pressure
arise in the separate inclusions as a result of the vari-
ety of inclusion shapes and orientations (Figure le).
This state, in which fluid flow between inclusions has
not yet equalized pressure, is known as the unrelaxed
state, or alternatively as the “isolated” case. In re-
sponse to these pressure differences, fluid flow passes
through the conduits connecting the pores. The stress
state after all interinclusion fluid flow has occurred is
the “relaxed” or “isobaric” state (Figure 1f). The set
of timescales over which the system relaxes defines
the spectrum of frequencies important for melt squirt
attenuation and velocity reduction.

The frequency-dependent seismic wave velocity re-
duction and attenuation can be determined from the
time domain response by calculating the frequency-
dependent complex elastic modulus of the two-phase
material. The behavior of a (massless) viscoelastic
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substance can be obtained from the transient stress
response excited by a step function in strain. To this
end, the stress creep function ¢(¢) that describes the
exponential decay of stress (Figure 1b) is introduced
and is defined by

o(t) = Mueo[1 + 4(t)], (2)

where ¢ is the stress in the material, gy is the ap-
plied shear strain, and ¢(0) = 0. M, is the unrelaxed
modulus of the material, defined by (2) when ¢t = 0.
The function ¢(t) is a unitless function that contains
all the information about the character of decay of
stress in the material. M, is the relaxed modulus
that is characteristic of the final state of relaxation so
¢(o0) = M,/M, — 1. The Fourier transform of the
stress creep response time derivative is related to the
complex elastic modulus by

oo
M@ =M+ [ Stoma, )
0
adapted from Aki and Richards [1980, p. 178] with
applied strain rather than applied stress. The su-
perscript dot is the time derivative, introduced be-
cause the input is a step function, not a delta function
strain. A complex component of the elastic modulus
represents the presence of attenuation and phase de-
lay for each harmonic driving function. The absorp-
tion factor Q! is defined as

Im(M)

Q' = Re(M)" (4)

In practice, as a matter of computational convenience,
we use an approximation that allows us to calculate
M (w) and Q~!(w) directly, without finding ¢(t) ex-
plicitly, provided we can obtain the relaxed M, and
unrelaxed M, moduli and the set of characteristic fre-
quencies wy, that control melt squirt relaxation. This
is discussed more completely in section 3.

3. Network Representation

We determine the frequency dependent attenua-
tion resulting from the melt squirt mechanism by
modeling the melt phase as randomly oriented biax-
ial oblate ellipsoidal pores connected by tubes. The
analysis of Faul et al. [1994] has shown that for
melt fractions between 0.8 and 3.3 vol %, most of
the melt is contained in low aspect ratio disk-shaped
pores. If these pores are randomly distributed, they
will be differentially pressurized according to their
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orientation with respect to the sense of macroscopic
shear. Low aspect ratio three-grain boundary in-
clusions (“tubules”) also are present and are likely
to control permeability when the melt fraction is
below the percolation threshold of the larger disk-
shaped inclusions, probably near 3% melt fraction
[Faul, 1997]. Thus we model disk-like inclusions as
ellipsoidal pores, which are connected by the conduits
that represent the three-grain boundary tubules.

The coordination of connection between the pores
has a role in determining the spectrum of relax-
ation times, so it is important that the selected net-
work configuration is representative of mantle partial
melts. We have chosen Kelvin’s tetrakaidecahedral
(truncated octohedron), which when close packed is a
space-filling polyhedron whose grain boundaries sim-
ulate the coordination of partial melt contained in
the interstitial spaces of olivine crystals (Figure 2).
This shape was first used to represent mantle melts
by Frank [1968] and was later used by Mavko [1980]
and Waff [1980]. Three grains of this shape con-
tact to form a linear intersection, representing a tube
where melt resides. Four triplejunction tubules come
together at four-grain contact points, approximating
the coordination of mantle melts.

The relationship between the flux of melt through
the conduits and the physical parameters of the sys-
tem is given by

d®

— = G&

7 ; (5)
K

G = —-—Z2R'rv-IirT 6
S (6)

(see Appendix A). In this relation, ® = ®(t) is a
vector of the melt fluxes through the conduits, Ky,
is melt bulk modulus, 7 is fluid viscosity, and & is
a parameter that adjusts tube impedance based on
its deviation from a circular cross section. The pore
volumes are stored in diagonal matrix V, the con-
nectivity network is stored in matrix I, and the gen-
eralized conduit impedances to fluid flow are stored
in diagonal matrix R. The parameter S is the frac-
tional change in hydrostatic strain of the melt, associ-
ated with transition from the unrelaxed to the relaxed
state.

This linear system of first-order differential equa-
tions has general solutions of the form

D (t) = ey, (7)

where wy, are the eigenvalues of the matrix G and uy,
are the corresponding eigenvectors. Particular solu-
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tions require knowledge of the initial conditions of the
system. The complete solution is

d(t) = Z cre “kluy, (8)
k=1
where
c=U19(0) 9)

and where U is a matrix whose columns are the uy.
In the unrelaxed state the initial fluxes are
2(0) = R 'T'P(0), (10)
Nk
where P(0) are the pressures inside the pores in the
unrelaxed state.

The eigenvalues of G are the inverse relaxation
times (i.e., the characteristic frequencies 1/7, = wy)
for the system of pores that relax their pressures in
concert. The ¢, of (8) weight the individual eigen-
solutions ®(t), so these values serve as a measure
of importance for each relaxation mechanism in the
system. The total response given by summing over n
relaxation mechanisms with characteristic frequencies
wy, and importance ay, is given by

" AW
M = M.+ M,1 - —) (11
(@) -3 W
) = A LY 12
Q (w) k; w]?, F w2’ ( )

adapted from Witte and Richards [1990], with aj =
ck/ Y ¢i- The modulus defect A defined by

A M,-M,
2 o /M,M,’

(13)

which is the maximum value of Q~!(w) [Mavko et
al., 1998]. Equations (11) and (12) serve as our ap-
proximations for the total frequency-dependent elas-
tic modulus and attenuation for the system. M, and
M, are derived from the finite element analyses of
Hammond and Humphreys [this issue].

3.1. Effect of Scale

Much of what we know about the geometry and
connectivity of melt comes from laboratory studies
where grain size has been carefully controlled. Typ-
ical experimental grain diameters have d ~ 105
m. Ophiolites studies suggest that natural olivine
grain diameters can be roughly 2 orders of magnitude
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greater (d ~ 1073 m) [Nicolas, 1989]. Thus, while
experimentally determined geometries are thought to
be similar in shape to those of mantle melts, there
may be a great difference in absolute scale between
the natural and experimental systems. Fortunately,
attenuation due to the melt squirt mechanism is in-
variant to the absolute scale of melt-matrix system.
This is shown with the following example: two dif-
ferentially pressurized pores each of volume V are
joined by a conduit of constant cross-sectional area,
A and impedance to fluid flow I. We wish to com-
pare the relative effect of changing each component’s
scale on the characteristic relaxation time of the melt
squirt mechanism. For Poiseuille flow through a cir-
cular cylindrical conduit the flux of melt through the
tube is

_wrtdp

© 4p do’
where r is the radius of the tube, dp/dz is the pressure
gradient, ® is the flux of the fluid through the tube,
and 7) is the viscosity of the melt. In this case, the
impedance per unit length of conduit is

(14)

I =4n/mrt. (15)

As the pore cross section becomes noncircular, while
preserving the cross-sectional area, the impedance
will increase. For the more general tubule we have
I = 4knm/A?, where k > 1 is a factor that ac-
counts for the dependence of impedance on the cross-
sectional shape of the conduit.

Using (14) and (15), we can evaluate the effect of
scale of each of the three key dimensions of the sys-
tem: the length of the conduit, the diameter of the
conduit, and the dimensions of the pores. If we in-
crease the length of the conduit by scale factor h,
keeping all other dimensions equal, the pressure gra-
dient is reduced by a factor of 1/h. Thus fluid flux
is reduced by 1/h, and the relaxation timescale is in-
creased by a factor of h. If, instead, we increase the
conduit radius by a factor of h, impedance is reduced
by a factor of 1/h*, and the relaxation timescale is
reduced by 1/h*. Finally, if the radii of the pores are
increased by h (scaling all three dimensions equally),
then their volume increases by h®. Rescaling the
pores, however, has no effect on the amount of strain
resulting from far-field stresses so the pressure in-
duced in each pore is unchanged, and the pressure
gradient is unaffected. Since the impedance of the
conduit is the same and the pressure gradient is the
same, the flux of fluid through the conduit does not
change, so it takes h® times as long to pass the greater
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amount of fluid and for pressure to equalize. The to-
tal effect of changing the absolute scale of the system
is given by the product of these three components.
Scaling up all components by A provides scaling of the
relaxation time by hh®1/h* = 1; that is, the timescale
of relaxation is unchanged. The competing lengthen-
ing and shortening of relaxation times for the melt
squirt mechanism cancel, and the melt squirt relax-
ation time is invariant to absolute scale.

3.2. Results of Attenuation Modeling

We model three cases that represent end-member
possibilities for crystal and melt distribution in the
upper mantle. The first case is derived from an
assumption that the linear dimension of grain size
has a Gaussian distribution. The second case as-
sumes that the linear dimension of grain size is log-
normally distributed. The third assumes that in-
frequent large pores are embedded in a network of
Gaussian-distributed grain sizes as in the first case.
Each is evaluated for its ability to produce the atten-
uation that is observed in the seismic band.

For each conceptual case a set of self-consistent
values is specified for the geometrical and physical
parameters of the crystal-melt aggregate with a melt
fraction of ~3%. These geometric parameters deter-
mine R and V in (6). The other terms in (6) are
determined from the physical properties of the melt
1, K, connectivity regime I' (Appendix A), S, and
conduit shape scaling factor x (determined in Ap-
pendix B). Absolute scale is not important as noted
in section 3.1. Ophiolites studies, however, suggest
that olivine grains have diameters of d ~ 1072 m
[Nicolas, 1989]. We will use this value as an average
diameter for the sake of reference. This grain scale
with the tetrakaidecahedral connectivity model im-
plies conduit lengths L = 3.5 x 10~* m. Using melt
fraction F' = 0.03, and a coefficient of partitioning of
melt volume between conduits and pores of 3 = 0.80,
(i.e., most melt in pores) [Faul et al., 1994], we ob-
tain the geometric parameters summarized in Table 1.
Initial pore pressures are based on the assumption of
randomly oriented biaxial ellipsoids. Because any ori-
entation from 0 to 27 is equally likely, pressures are
randomly selected with variance taken from the re-
sults of the finite element calculations of Hammond
and Humphreys [this issue]. In our simulations, 240
pores are connected via 480 conduits. The triple junc-
tion tubules are represented with an impedance to
flow with k = 1.75 (Appendix B).

All parameters needed to determine G in (6) are



now specified, and we can calculate the eigenvalues
and thus the relaxation times for the system. The
results for the case with Gaussian distribution are
shown in Figure 3. Little attenuation occurs in the
seismic frequency band. Between 1 and 10 Hz, atten-
uation increases rapidly, and at ~50 Hz it achieves
its peak. This result is inconsistent with nearly con-
stant observed @ !(w), suggesting that attenuation
observed with body waves and normal modes is not a
result of melt squirt in a Gaussian network.

Another possible case is that the grain size distri-
bution has greater similarity to log-normal distribu-
tion than Gaussian. With the same parameters as in
the first case (Table 1) except for the distribution of
conduit and pore radii, an attenuation band occurs
between 10° and 10° Hz (Figure 3). Since this case
has a great many smaller grains, there are a corre-
spondingly greater number of smaller pores and con-
duits, and thus the importance of shorter relaxation
times and higher frequencies is increased. Attenua-
tion in the seismic band is still nearly zero below 1
Hz, where > 1000, and increases only slightly by
10 Hz.

The presence of a few greatly larger pockets of
melt, or localized zones of preferentially aligned in-
clusions that span many grain diameters, greatly
increases relaxation times and provides attenuation
closer to the seismic band. In the third case one of
the pores from the first case was expanded to 1000
times the average pore size. While the distribution of
characteristic frequencies is nearly the same as that of
the first case, the response has changed significantly.
The attenuation peak has now shifted to ~13 Hz, with
significant attenuation in the seismic band. Equal-
ization of pressure requires redistribution of melt to
many pores that are connected only indirectly to the
large pore, thereby increasing the distance melt must
travel. This illustrates that deviations from homoge-
neous distributions of inclusions cause melt to move
over distances larger than the immediate grain scale.
This can occur when very large pores exist or when
pore orientations collect into spatial domains of pref-
erentially aligned inclusions. These situations provide
potential mechanisms by which some relaxation times
of the system can be greatly increased.

3.3. Melt Squirt in Bulk Compression

Bulk compression, during P wave propagation, can
create variation in the pore pressures when pore as-
pect ratios vary. We argue below that these pressure
differences probably do not drive enough melt squirt
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to provide significant relaxation. Thus bulk attenua-
tion due to melt squirt is most likely not important
in the seismic band.

Understanding the effect of bulk compression re-
quires knowledge of the distribution of pore aspect
ratios, the effect of aspect ratio on internal pore pres-
sure, and the effect of pressure changes on melt squirt
relaxation times. The effect of aspect ratio on pore
pressure determined from Eshelby [1957] shows that
there is very little additional change in pore pressure
when the aspect ratio goes below 0.1, thus disallow-
ing melt squirt bulk attenuation. If variable aspect
ratios occur above 0.1, however, some bulk attenua-
tion might be expected. The relevant results from
mantle melting experiments indicate that the pro-
portion of aspect ratios > 0.1 is between 25% and
100% [Faul, 1997; Daines and Kohlstedt, 1997]. In
this case the difference between the relaxed and un-
relaxed moduli will increase, increasing the modulus
defect (equation (13)). This change alone does not
alter relaxation times, however, and thus attenuation
remains outside the seismic band. Only if S (equation
(A17)) is greatly increased owing to aspect ratio con-
trolled changes in pore pressure will relaxation times
be lengthened providing seismic attenuation.

4. Discussion

Our primary result is that for typical conceptions
of upper mantle partial melt distribution, relaxation
times are too short to provide measurable attenuation
in the seismic band. This differs from the conclusion
of O’Connell and Budianski [1977] that dissipation in
a partially molten upper mantle is most probably due
to melt flowing between cracks. They, however, used
crack aspect ratios distributed evenly from 10~ to
10~1, more extreme than in our modeling. This dif-
ference in aspect ratios can account for the difference
in our conclusions (Appendix C). In order for melt
squirt to cause significant attenuation the relaxation
timescales involved in the transport of melt between
pores must be lengthened considerably. Appropri-
ate changes in properties that would cause increased
transport times include increasing the melt viscosity
by orders of magnitude, lengthening transport dis-
tances, or increasing conduit impedances. Viscosity
of basaltic melts is relatively well constrained by ex-
perimental studies and is unlikely to increase by an
order of magnitude above our chosen value of 102 Pa
s. A large degree of interfacial curvature causing con-
duits to pinch off in the middle would need to be
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a network-wide effect to increase relaxation times;
otherwise, melt will find paths of lesser resistance
to equalize pore pressure. This might occur if melt
topology is modified as a result of long-term changes
in melt pore pressure relative to the crystalline matrix
[Waff, 1980]. One might expect a depth dependence
to the set of times, since K, increases with depth
[Rigden et al., 1988]. We have shown, however, in the
analysis of parameter sensitivity of Appendix C that
K, does not effect relaxation times. See Appendix
C for a more complete discussion of the sensitivity of
this modeling to individual parameters.

Segregating the population of inclusions into re-
gions where pores are preferentially aligned can have
the effect of increasing transport distance and thus
increasing relaxation times. This effect is analogous
to the case where a single oversized pore was intro-
duced to the network. Even though the set of relax-
ation times is nearly identical to the Gaussian case,
the relaxation frequency spectrum was changed sig-
nificantly. For example at 1 Hz, attenuation changed
from Qg = 361 for the Gaussian case to Qs = 89 with
the single dominant pore. This change in relaxation
times is in agreement with the statements made in
section 3.1, e.g., adding a single pore 1000 times the
volume of the other pores is equivalent to increasing
the radius of that pore by a scaling factor of A = 10,
thus increasing the relaxation times by A% = 1000. In
addition, the mechanisms associated with the passage
of melt to pores only indirectly connected to the large
pore have increased in importance because it contains
a larger proportion of the melt. For example, in Fig-
ure 4, melt passing from P; to Py via P or Ps has its
own characteristic relaxation time. Thus transmitting
melt longer distances through the network is possible
if pressure gradients provide the incentive. Such a sit-
uation can exist if the melt is stratified into horizontal
bands [Waff, 1980] or if lattice-preferred orientation
collects into zones of anisotropic permeability of the
order of 107! to 10! m in size. While we can imagine
possible ways to increase relaxation times by appeal-
ing to regions of aligned melt pockets, it is unlikely
that heterogeneous anisotropy on this scale is a com-
mon feature in the upper mantle. We conclude that
reasonable changes to the distribution of upper man-
tle partial melt, or in the parameters listed in Table 1,
will not provide the lengthing of relaxation times nec-
essary to provide attenuation in the seismic band.

Since there is very little attenuation in the seis-
mic band, and since the peak of attenuation is at
frequencies higher than the seismic band, the mod-
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ulus excited by observed seismic waves is the relaxed
modulus. This translates to the Vp and Vg seismic
velocity reductions of 4.3% and 11.4% calculated by
Hammond and Humphreys [this issue].

This modeling is applicable to low melt fractions
between F = 0% and approximately F' = 3%, the
range over which the permeability of melt can be rep-
resented as tubes connecting low aspect ratio disk-
shaped pores. Above this melt fraction the perco-
lation threshold of the disk-shaped pores will be at-
tained [Faul, 1997]. At melt fractions greater than
the percolation threshold, relaxation times are ex-
pected to be much shorter since many new paths for
pressure equalization are opened, pushing attenuation
even further from the seismic band.

We have assumed here that the distribution of in-
clusion orientations is random. Experimental stud-
ies of partially molten mantle materials indicate that
melt in film-like pores become preferentially aligned
in the presence of nonhydrostatic stress conditions
[Jin et al., 1994; Kohlstedt and Zimmerman, 1996;
Bai et al., 1997; Daines and Kohlstedt, 1997; Karato
et al., 1998; Zimmerman et al., 1999]. Preferential
alignment does not result, however, in increased melt
transport distances or modified inclusion aspect ra-
tios. Furthermore, preferential alignment will tend
to enhance connectivity between inclusions and to re-
duce the variance of induced pore pressure, resulting
in decreased relaxation times, smaller modulus defect,
and no increase of attenuation in the seismic band.

5. Conclusions

1. Teleseismic waves excite the relaxed modulus
of partially molten upper mantle rock. Thus schemes
that relate seismic velocity reduction to mantle physi-
cal state should employ derivatives of seismic velocity
with respect to melt fraction based on relaxed, pres-
sure equilibrated melt, as in the work by Hammond
and Humphreys [this issue].

2. Since our modeling predicts increasing atten-
uation with frequency but observed attenuation de-
creases with frequency, the commonly observed @ in
the upper mantle is not due to the melt squirt mech-
anism.

3. Melt squirt attenuation effects are invariant to
the absolute scale of the crystal-fluid assembly. The
size of grains does not affect the frequencies that pro-
duce melt squirt attenuation. The distribution of
grain sizes, however, does affect the relative impor-
tance of different relaxation times and thus deter-
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mines the dominant frequencies for melt squirt atten-
uation. The important frequencies are in the band
just above the seismic band, assuming that the grain
size distribution is Gaussian, and as long as the phys-
ical properties of the melt are as listed in Table 1.

4. The frequencies over which melt squirt attenua-
tion are important are strong functions of the aspect
ratio of interstitial pores, of the partitioning of melt
between narrow conduits and low aspect ratio pores,
and of the length scales of fluid transport. Melt squirt
is insensitive to the bulk modulus of the melt.

Appendix A: Stress Relaxation
of Pores Filled With Melt

Al. Relaxation Time

The physics of fluid relaxation in the pore and con-
duit network can be described with parameters for the
fluid, the conduits, the pores, and the solid matrix.
These are the melt viscosity 77, melt and solid matrix
incompressibility K,, and Kj, fluid flux ®;, general-
ized impedance R; through the jth conduit, volume
Vi, and pressure P; of the ith pore. For the simpli-
fied two-pore system connected via a single conduit
the difference in pressure between the pores drives the
flux of melt from the first to the second pore:

1
= R—nn(Pl - ). (A1)
The parameter x corrects for the noncircular cross
section of the melt conduit and is determined in Ap-
pendix B. The generalized impedance parameter R
can be defined by (Al); however, (A1) can also be
compared to (14) providing

4L
R= mrrd’ (A2)
where L is the length of the conduit. R is depen-
dent only on the geometry of the tubule and not on
any physical properties of the melt or crystal. It is
desirable to not assume that conduits have constant
cross-sectional shape along their length, and the form
of (A1) allows for this. For the purpose of assign-
ing quantities to R, however, in our modeling we do
assume constant cross-sectional shape (which can be
viewed as the effective cross-sectional shape for con-
duits that do change along their length). By using
k = 1.75 in (A2) we are assuming that the conduit
has the triple junction cross section (Appendix B) and

constant, cross-sectional shape.

8

Rearranging (A1) and differentiating with respect
to time provides

d _ 1 dn_dp,
dt  nkR" dt dt
The derivative of pressure with respect to time is re-
lated to the flux through the tube with
dP _ 4dP.
dt dv
We model the transition from the unrelaxed to the

relaxed state, so the derivative on the right side of
(A4) becomes

)- (A3)

(A4)

dP P, —P,

av - v,-V,’
where the subscripts r and u refer to the relaxed and
unrelaxed states. We also presume that all melt pock-
ets are connected, so P, = 0 (we have removed the
background hydrostatic pressure field), and

P P,

v V,-V.’
Substituting (A6) into (A4) and into (A3) gives our
first-order linear differential equation

de _
dt

(A5)

(A6)

—wd, (A7)

where
W= 1 [ Plu + P2u
77/€R V'lu - ‘/17‘ ‘/211, - ‘/21‘

] (A)

is the inverse of the relaxation time constant (char-
acteristic frequency) for the system since the solution
to (A7) is ®(0)e~vt.

The pore pressure and volume terms in (A8) can
be recast as equivalent hydrostatic strains of the melt
associated with transition from the unrelaxed to the
relaxed state

P, = —K,&., (A9)
Vu - VE)
u = Fa— Al
: = (A10)
Vi =V
r = ; All
: = (A1)

where V4 is the original undeformed pore volume and
V, and V,, are the volumes in the relaxed and unre-
laxed states. Note that expansive strains are positive
So a contracting volume provides positive pressure.
So now

K, Elu E2u
w= + , (A12
n”R[WO(Elr - 51u) ‘/20(627" - 52u)] ( )




where €;, is the volumetric strain of the liquid inside
pore ¢ in the unrelaxed state.

To simplify, we use pores shaped like biaxial ellip-
soids of aspect ratio & = 0.1 (with axes a = b > ¢)
embedded in an elastic medium with the ¢ axis in the
z-z plane. Pure shear is induced by contraction along
the z axis and extension along the z axis (Figure Al).
We can approximate the volumetric strain inside the
pores as functions of orientation §; with respect to the
pure shear

€iw = FEycos(26;) (A13)
gir = Epcos(26;), (A14)

where 6; = 0 when the minor axis of the ellipsoid is
aligned with the axis of maximum contraction. Thus
E, and E, are defined via (A13) and (A14) as the
maxima of the volumetric strains inside the pores in
the unrelaxed and relaxed states, respectively. Sub-
stituting (A13) and (A14) into (A12) provides

— Km [ Elu + EQU
N&ER Vio(Ery — Ery)  Vao(Ear — Eay)

].(A15)

The orientations of the ellipses have dropped out since
it is the ratio of the difference in strain between the
unrelaxed and relaxed states controls the relaxation
time. Thus the relaxation time is not dependent on
pore orientation. Pore orientation does, however, ef-
fect initial pore pressure, i.e., the ®(0) term in (10),
and in that way controls the importance of the relax-
ation of that specific pore to the whole system.
Since all pores have the same aspect ratio in our

model, they have identical maximum strains within
them so all E;, /(E;» — E;,) are the same and

K, 1 1
= Amos g Al
v SneR; T A (A16)
(Er — Ey)
\Br = Bu) Al
s =, (a17)

where S is the parameter that represents the percent-
age change in strain inside the inclusion between the
relaxed and the unrelaxed states. In this way we have
contained all the properties of the solid and liquid
elastic interaction that are relevant to the melt squirt
relaxation times into one parameter S.

A2. Representing the Connectivity of Many
Pores

When more than two pores are present, then the
pressure and melt content of each pore can be effected
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by flow into or out of several conduits. A simplified
example of four pores connected by five conduits is
shown in Figure 4. Each conduit has a positive pre-
scribed direction as shown with arrows in Figure 4.

The flux through each conduit is represented ac-
cording to (A1) by

o, = ,7,{131( L — Ps)
o, = WIRz( » — Py)
B = g (P~ Py) (A18)
¢y = R (Ps — Py)
s = iR (P — P»)

The fluxes change pressure in pores by removing or
adding melt. Thus for each pore we use (A4) and
(A6). Equating (A8) with (A16) and matching terms

yields
P; K
_ i _ Bm (A19)
V;'u - ‘/1'7‘ SV;
This gives the rate of change of pressure in each pore
as

dbP, _ K,

R

ddé : ﬁ[@l _ (1)2 + (1)5] (AZO)
(ﬁ% : SKYS 3 4 5

i S—4[‘I’2 + @4]

Differentiating (A18) and substituting in (A20) yields
a set of equations that can be represented as

dP
— = G® A21
o (A21)
where

— 1 1t

G = nmSR rv 1% (A22)

where generalized impedances for each conduit are
stored in a diagonal matrix R and the pore volumes
are stored along the diagonal of matrix V. The con-
nectivity of the pores is contained in I', explained be-
low in more detail. This system of linear differential
equations solves the time-dependent flow problem for

the vector containing the melt fluxes in the conduits
P.

When there are a great many pores present and
they are connected according to the tetrakaidecahe-
dral coordination, each pore is connected to four con-
duits, and each conduit is connected to two pores.
Thus if n is the total number of pores, then there are
2n conduits. We can represent the connectivity of all
pores to one another with the matrix . If pore 7 and
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pore j are connected via a conduit, then I';; = =£1,
with the sign dependent on the prescribed positive di-
rection for melt flowing through the tube. T is a 2n
by n matrix, with the rows of T' each representing a
single conduit and thus having only two nonzero en-
tries, one positive and one negative. The columns of
T represent individual pores, so that the number of
nonzero entries in a column represents the number of
conduits connecting at this pore. In this case, with
tetrakaidecahedral coordination, there will always be
four nonzero entries, whose signs represent the ori-
ented direction for positive flux in or out of this pore.
T can be randomly generated by beginning with any
matrix that satisfies this criterion and then permuting
the rows and columns, since these transformations do
not alter the connectivity regime (i.e., the same num-
ber of conduits will connect at each pore).

Appendix B: Impedance
of a Cuspate Tubule

The increase in fluid dynamic impedance due to
the cuspateness of tubule cross section is calculated
with visco-elastic finite elements. Three-dimensional
tubes of both circular and triangular cuspate cross
section are constructed. The shape of the triangular
cuspate tube with unit radius is defined as

x = cos(f) + 5 i . cos(26) (B1)

1

—sin(f in(26 B2

y = —sin0)+5—sin@)  (B2)
Mavko, [1980]. The shape approaches a circle when
€ — oo and is most cuspate when € = 0. Figure Bl

illustrates these shapes.

To examine the difference in flow properties be-
tween the cuspate and circular tubules, a pressure
gradient is applied along the fluid inside tubes of both
shapes, with the same cross sectional area. The finite
element calculation provides the velocities for every
point inside the tube, from which the volumetric flux
of fluid down the tube is calculated. The ratio of
flux through the circular tube to the flux through the
cuspate tubes is kK = 1.75. Down tube velocity for
each cross section is shown in Figure B1. These cal-
culations were performed with the three-dimensional
viscoelastic finite element program GAEA /BORG de-
veloped by Saucier [1991] and Palmer [1997].
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Appendix C: Sensitivity Analysis

To investigate the inherent sensitivity of the char-
acteristic frequencies to each parameter, we examine

X dw

——, C1

w dX (C1)
where X is the parameter in question. The results
are listed in Table 1.

In most cases the determination of the sensitivity is
straightforward using (A16). In some cases, however,
the parameter analyzed affects more than one variable
in (A16), making calculation of the sensitivity slightly
more complicated. For example, to determine the de-
pendence of characteristic frequency on melt fraction,
we notice that w is a function of the pore volume v,
and conduit volume v, and that these are, in turn,
dependent on F'. The sensitivity is given by

Fdo _F Owdyy 0w dv
wdF  w'Ov,dF = Ov. dF"”

(C2)

Partial derivatives with respect to F' are easily derived
from the definition of F' = (v, + v.) /v, where vg is
the total solid plus melt volume and the definition of
B = vp/(vp+ve). The two partial derivatives of w are
given in Table 1 for the parameters v, and v.. The
answer simplifies to

Fdo _ (C3)
w dF
Sensitivity of w to pore aspect ratio « is determined
in the range of aspect ratios 1 < a < 10~2. Charac-
teristic frequency is a function of S and o,, which are
both, in turn, dependent on . Working with log(«)
provides

log(a) dw  log(a) Ow dS Ow dop
w dogla) = w [65 dlog(a) + dop dlog(a)]'
(C4)
The right-hand term goes to zero, since sensitivity to
o, vanishes (Table 1), and sensitivity to S is known

from Table 1, so

log(a) dw _log(a) dS

w dlog(a) - S dlog(a) (C5)

Sensitivity of S to log(a) is determined numerically
with the equations of Eshelby [1957] and Wu [1966],
providing

log(a) dw
w dlog(a)

= —5log(a), (C6)
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which, for @ = 0.10, yields the value in Table 1. Re-
laxation frequencies become less sensitive to a as the
pores become more spherical.

The partition coefficient 3 has the greatest effect
of all parameters on the characteristic frequencies of
melt squirt attenuation. Its derivation is similar to
that for the effect of melt fraction, except that in this
case the parameters 8 do not cancel. Sensitivity to 3
is given by

Bdo B+1

wdf B-1
This has an increasingly negative value as § — 1. As
0 increases, the radii of the pores increase, while the
radii of the conduits decrease, both contributing to
increased relaxation times. When the radius of the
conduits approaches zero the conduit impedance in-
creases very rapidly. For this reason, when g = 0.80,
the sensitivity of characteristic frequency to 8 is —9.
Thus characteristic frequencies are more sensitive to
changes in the partitioning of the melt volume be-
tween pores and conduits 8 than to any other model
parameters.

(€7)

Sensitivity values for the standard deviations of the
pore and conduit radii, o}, and o., are not shown since
changes in the distribution of radii affect many char-
acteristic frequencies rather than a single frequency.
Therefore the whole distribution of characteristic fre-
quencies must be calculated, as was discussed in sec-
tion 3.3.

C1. Effect of Melt Bulk Modulus

The melt bulk modulus K,, has no effect on the
characteristic frequencies of melt squirt attenuation.
Applying our sensitivity analysis strategy, from (A16)
we see that K, is in the numerator, and thus we
might expect sensitivity of +1 as a result. K, also
effects S, however, so the sensitivity is given by

Kp do _ Kp 0w 0w dS, | Knp dS
w dKp  w 0K, @ 0SdK, = S dK,
(C8)

We find the right-hand term by numerically calcu-
lating S as a function of K, and then differentiating.
S, as defined by (A17), is the percentage change in
volumetric strain of the fluid during transition from
the unrelaxed to the relaxed state. We therefore ob-
tain S by calculating the maximum strains for the
fluid inside the pore in the unrelaxed F, and relaxed
E,. states. This is accomplished by applying the re-
lationships of Eshelby [1957] and Wu [1966], for the
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response of an ellipsoidal inclusion embedded in an in-
finite elastic medium. Maximum hydrostatic strains
inside the pore occur when we induce pure shear by
providing shortening of the solid along the short axis
of the oblate ellipsoid (e,, = —0.1) and lengthening
along one of the other axes (g5, = 0.1). We use a
biaxial ellipsoid with aspect ratio a = 0.1, containing
material with Poisson’s ratio v = 0.5 (a fluid). We
find the interior strain for fluids with K,, /K, varying
from 107 to 10'. Results are presented in Figure C1.

Note that for these conditions the hydrostatic strains
inside the pore are positive, indicating that when far-
field strain in the solid is contractional along the short
axis, net expansive strain inside the pore results. This
is due to the competing effect of the solid contract-
ing in the direction perpendicular to the lengthening
direction and thereby pulling away from the pore cen-
ter.

The values needed to calculate S as a function of
K, are in Figure Cla. E, is independent of K, since
it is the maximum strain of the fluid associated with
the relaxed state. This occurs when pressure is equal-
ized between the inclusions so it is always the value of
strain in the limit that K,, — 0. E, is the unrelaxed
maximum strain and is always a function of K,,. The
resulting values for S are shown in Figure Clb. As
it turns out, S is proportional to K,,, and thus the
rightmost term of (C8) equals one, leaving

Bm dw _ . (C9)
w dK,,
This result makes intuitive sense when we imagine
the competing effects of changing K,. For exam-
ple, increasing K, provides greater pressure in the
pores resulting from a given applied strain, tending
to reduce relaxation times. S also increases with K,
however, so the magnitude of the difference between
the unrelaxed and relaxed states increases as K, in-
creases, thereby increasing the relaxation time. These
effects cancel one another, providing zero sensitivity
to the melt bulk modulus.
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Figure 1. Viscoelastic model for partially molten upper mantle rock. (a) An applied step in strain ¢ results in (b)
a step in stress o followed by an exponential decay over time ¢. Stages of mechanical response: (c) undeformed, (d)
glued, with shear stress still present in the fluid, (e) unrelaxed with shear stress within the pore gone, (f) relaxed
with pressure equalized between pores. The vertical light grey line highlights the shear deformation inside and
around one pore at each step.

Figure 2. Tetrakaidecahedral model for space-filling olivine crystal. Also known as a truncated octohedron, the
shape has 14 faces and 36 edges.

Figure 3. Results of modeling of melt squirt anelasticity. Histograms of characteristic frequencies for the (a)
Gaussian, (b) single large pore added, and (c) lognormal cases. (d) Real part of elastic modulus, and (e) attenuation
function Q~!(w), with Gaussian case (solid line), single large pore embedded (short dashed line), and lognormal
distribution of grain sizes (long dashed line). Seismic band up to 10 Hz is shaded for clarity.

Figure 4. Ellipsoidal pore space in an elastic solid medium. Pure shear induced via contraction along z axis,
extension along x axis. Short axis of pore ¢ is oriented at angle ; with respect to applied shear.

Figure A1l. Example with four pores and five conduits connected in a network. Arrows indicate positive melt flux
®; direction through conduit . Pore are represented by P;.

Figure B1. Cross-sectional shapes for the (a) cuspate (¢ = 0) and the (b) circular (¢ — o0) tubes. (c) and (d)
Velocity of the fluid throughout the tube. For tubes with the same cross-sectional area and pressure gradient,
~T75% more melt flows through the circular tube in the same amount of time.

Figure C1. (a) Volumetric strain inside a biaxial ellipsoid with aspect ratio @ = 0.10 as a function of melt bulk
modulus K, /K. Inset shows results assuming that far-field strain is €,, €y,€e, = [0.1,0,—0.1]. (b) S parameter as
a function of melt bulk modulus.
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Table 1. Parameters Used in Modeling Melt Squirt Anelasticity

Description

Parameter Value Sensitivity (£ 42

ax

Grain size d =0.001 m 0

Conduit length L=353x10"*m -1
Melt fraction F=.3 +1
Fluid viscosity n =100 Pa s -1
Melt bulk modulus K,, =40 GPa 0

Biaxial pore aspect ratio a=0.10 +5
Pore/conduit partition coefficient 3 = 0.80 -9
Mean pore radius rp =1.420 x 107* m -3
Mean pore volume Up = 1.200 x 107% m? -1
Pore radius s.d. orp = 3.550 x 107° m fe
Mean conduit radius 7. =1.500x 1075 m +4
Mean conduit volume T. = 3.000 x 10710 m3 +2
Conduit radius stand. dev. Ore =3.750 x 107 % m .-
Mean conduit impedance R=397x10% m—3 -1
Mean initial pore pressure p=20 0

Initial pore pressure s.d. op = 2.5 GPa 0

Conduit noncircular impedance k=175 -1
Differential hydrostatic strain S =231 -1

The parameters L, vy, U, R, and S are calculated from the other input parameters.

Sensitivity is defined in (16).
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